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ABSTRACT 
The promise of high-quality, integrated data sets for policy 
analysis is great. However, significant impediments remain that 
make the creation of such data sets very difficult. The 
identification of processes and algorithms for carrying out 
approximate string matching on personal-level information while 
at the same time keeping that information unknown (private 
linkage) is quickly growing in importance. Without these 
processes and algorithms, the creation of high-quality data sets 
integrated from multiple public agencies remains difficult. In this 
paper, a method for carrying out secure, private string-matching 
between data sets using standard string similarity measures is 
presented.   

Categories and Subject Descriptors 
H.2.0 [Database Management]: General—Security, integrity, and 
protection; H.3.4 [Information Storage and Retrieval]: Systems 
and Software—Performance evaluation (efficiency and 
effectiveness); H.2.8 [Database Applications]: Data mining. 

General Terms 
Design, Algorithms, Performance, Experimentation, Security. 

Keywords 
Record linkage, secure scalar product, private linkage, private 
information retrieval, linkage, integration, privacy. 

1. INTRODUCTION 
The integration of record-level data from the administrative data 
systems of multiple public service agencies has the potential for 
generating high-quality evidence (heretofore unattainable) to be 
used in the assessment of public policy effects.  However, when 
attempting to combine data records from these systems, a number 
of complex legal issues must be considered, not the least of which 
is the privacy of persons represented by the data in the systems. 
Significant differences exist between federal law, multiple 
state/provincial/regional laws, and agency enforcement 
regulations as they pertain to the integration of identified 
information [1] [2].   

 

Because there exist many overlapping and often inconsistent 
privacy-related restrictions at multiple levels of government, the 
linkage of administrative data records across public agencies can 
prove exceedingly difficult.  In response, an emerging approach to 
constructing cross-agency data sets for the purpose of policy 
analysis involves the probabilistic linkage of records using 
demographics (e.g. name, gender, birthdate, location) that have 
been hashed/encrypted in some manner so as to be unidentifiable 
to the entity responsible for carrying out the linking process (or 
anyone else who may gain unauthorized access to the records).  

The issue that arises is that some common methods of 
demographic comparison (e.g. string similarity functions) are 
rendered inadequate by the usage of the hashing/encryption 
techniques.  Most  notably,  a  slight  misspelling  in  “first  name”  will  
result in completely different hashes and, therefore, a 100% non-
match). A number of approaches to rectify this issue have been 
proposed [3] [4] [5]. However, each proposed method necessarily 
involves some level of reduction in matching performance as 
compared to string-similarity functions used on un-obscured data 
[6].  

In this paper, a methodology is presented that provides the 
necessary function of privacy protection but also allows for the 
use of existing string-similarity functions (e.g. Jaro-Winkler) on 
privacy-protected strings without loss of fidelity. The described 
methodology is currently being deployed in two multi-agency 
data-integration projects in the State of Virginia [7] [8]. 

2. Problem Statement 
Given two database owners A and B each holding lists of 
identified strings (e.g. surnames) 𝑆௔ = {𝑎ଵ,… , 𝑎௡} and 
𝑆௕ = {𝑏ଵ,… , 𝑏௡}, and a data linker C, compute string 
similarity measures of all pairs (𝑎௜, 𝑏௜) ∈ 𝑆௔ × 𝑆௕ such that all 
strings can only be seen by C in a privacy-protected format, and 
the measures computed match the measures if computed on non-
privacy-protected strings. 

3. Previous Approaches 
A number of approaches have been proposed and used to carry 
out string similarity matching in a privacy-protected manner. 
However, given the methods employed, these approaches result in 
some necessary amount of loss in recall, precision, or both in 
comparison to string similarity functions carried out on 
unprotected strings. Pang and Hansen suggest a protocol 
employing a common table of reference strings to which the 
actual strings in two data sets can be compared. Edit-distances 
from the actual strings to the reference strings can be computed. 
The reference strings closest to the actual strings can be encrypted 
and sent along with the edit distances to be used for match 
determination [3]. Unfortunately, testing of the process results in a  
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fairly sizeable reduction in both recall and precision in 
comparison to a reference string similarity measure used on 
unprotected strings [6].  
Scannapieco, et al. suggest a protocol that employs a bit of 
mathematical stenography by embedding a given string using the 
SparseMap method into a Euclidean space already populated with 
random strings.  The coordinates for a given string are then given 
as the approximate distances between the string and the random 
strings. A third party compares the Euclidean distances between 
the string to determine a match [4]. Testing shows a markedly 
better result than the table of reference string approach, but still a 
not insignificant difference from a reference string similarity 
measure used on unprotected strings [6].   
Schnell et al. propose a very novel method that takes advantage of 
the properties of Bloom filters. A Bloom filter is a space-efficient 
probabilistic data structure represented by a bit array that is used 
to test whether an element is a member of a set. Strings are stored 
as  bits  that  represent  the  HMAC  hashes  of  the  string’s  constituent  
n-grams. Bloom filters with similar strings will have a high 
proportion of the same bits set to 1. Using this knowledge, a string 
similarity measure, the Dice coefficient, can be used to calculate 
the ratio of similarity. This method works quite well, in fact 
testing shows that the precision-recall curves using 2-grams is 
nearly identical to the benchmark metric [6]. However, the Bloom 
filter approach is only applicable to using similarity measures that 
determine the overall similarity of one set of characters to another. 
That is, when order does not matter. Because of the nature of the 
encoding scheme and Bloom filters themselves, there is not a way 
to use this method with standard distance-metrics like Levenstein 
or Jaro-Winkler. In the approach presented here, both n-gram 
based similarity functions and distance-based similarity functions 
can be employed. 

4. Method 
The algorithm described in this paper is to allow comparison of 
strings using standard string-similarity functions when the strings 
must be obfuscated in some secure manner (e.g. hash, encrypt, 
cipher). Two separate processes are elaborated within. The first, 
using a one-time-pad to create cipher for each string, provides for 
a type of obfuscation that is both theoretically unbreakable and 
not vulnerable to frequency analysis [9]. The second process 
enhances the first by employing the method of chaffing and 
winnowing which involves the addition to the cipher of fake 
characters   (“chaff”)   to   the   valid   characters   (“wheat”)   so   as   to  
result in all encoded strings being the same length [10]. 

4.1 Key Creation and Distribution 
We start by assuming two parties A and B who want to link data 
records, and a data linker C to whom parties A and B only want to 
divulge personal information that has been obfuscated in a fully-
secure manner. To initiate the process, data linker C sends to both 
A and B two keys, a randomly-derived pad-key and a randomly-
derived wheat-key. The pad-key is used by both A and B for 
string ciphering. The wheat-key is used by both A and B for 
character-position hashing. A and B also, individually, create a 
chaff-key for the insertion of fake characters and positions before 
delivering the string back to C. The expectation is that these keys 
are produced in an automated fashion by a computer program that 
can handle the randomness requirements of pad-key creation, as 
well as the production of a globally unique identifier (GUID), a 
unique 128-bit number that is produced by the computer OS or 
particular application (e.g. database) or library (e.g. Java, .NET). 
The wheat- and chaff-keys are based on the production of random 

GUIDs. The pad-key and wheat-key are sent via SSL-encrypted 
electronic communications.  

After sending the pad-key, the key is immediately discarded from 
memory (not stored).  The wheat-key is retained and stored for 
chaff-removal and character-position decoding of the returned 
strings. 

4.1.1 One-Time-Pad Key Generation 
In cryptography, a one-time pad is a private key that has been 
generated randomly and is used only once to encrypt a message. 
The message is then decrypted by the receiver using a matching 
one-time pad and key. Messages encrypted with keys based on 
randomness have the advantage that they are considered to be 
“perfect”   encryption   methods,   which   means   there   is   a  
mathematical proof that cryptanalysis is impossible [9] [11]. Each 
encryption is unique and bears no relation to the next encryption. 
There is no pattern to decipher. 

4.1.2 Cryptographically Secure Random Key 
Generation 
The key to a one-time-pad’s  effectiveness  is  the  true  randomness  
of the key produced. Cryptographic applications require truly 
random sequences that cannot be predicted. This is an issue that 
demands close attention as most programming languages will 
instantiate  a  “System.Random”  or  similar  object  instance  and  call  
one of the member functions to get random numbers. The 
numbers returned aren't truly random, but rather pseudo random. 
This can be good enough for most applications that call for 
randomness, but not for a one-time-pad   because   the   “pseudo”  
random nature of the numbers returned by such objects is not 
good enough for cryptographic purposes. These algorithms 
generate random numbers that are actually a sequence in which 
the next number generated is dependent on the previous number 
generated (therefore potentially predictable).  

What is needed instead is for each number to be selected 
randomly irrespective of any previous selections. Most modern 
languages implement a library specifically for cryptography and 
provide such a method for the production of independent random 
numbers. In Java there is the Security.SecureRandom class. In 
.NET (which is used for the two Virginia projects) the 
Cryptography.RandomNumberGenerator abstract class serves as 
the base class for all cryptographic random number generators. 
Cryptography.RNGCryptoServiceProvider provides an 
implementation of that abstract class. For our implementation, we 
use the RNGCryptoServiceProvider class to create a pad-key by 
creating a byte array the same size as a given alpha-numeric seed 
and populating the array with independently-random characters 
(converted from the numbers). 

4.2 Cipher Generation: One-Time-Pad 
Example 
As   an   example,   let’s say that we want to encrypt the string 
“AARON”   from   data   set   𝑆௔. Using a cryptographically secure 
random key generator we feed in the alpha-numeric seed: 
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"  

and are returned the pad-key 

"DO88Z0DLE7SZZI6ABAD4CHIJJ6PTYZUYZYKT". 

 
 
 



Table 1. The Message is aligned with the Pad 

 
Table 2. Add Message and Pad Positions (from original 

alphanumeric key), then MOD length of the original key 
 We start by aligning the message and the 
pad-key and recording each characters 
position in the original alpha-numeric seed 
(e.g. R is the 18th letter). We then add the 
aligned position numbers and used modular 
arithmetic   to   “wrap-around”   the   original  
alpha-numeric key (in this case, MOD 36) 
to get to the new cipher-letter. In the 
example,  “AARON”   becomes   “EPQND”.  
This result is not vulnerable to frequency 
analysis which can be evidenced by the fact 
that the same letter is not encrypted the 
same  way  twice  (The   first   two  letters,  “A”  

and  “A”  where  encrypted  as  “E”  and  “P”,  respectively.  The  result  
also withstands index of coincidence attacks (looking for 
repetition of the key) because the key is as long as or longer than 
the message being encoded. 

While decryption of a one-time pad, given the key, is straight 
forward, we have no wish to decrypt the result. This is why the 
pad-key is discarded by C immediately after transmission to A 
and B. What we care about here is that both A and B use the same 
pad-key, thus producing the same cipher for identical characters. 
In this manner, we have created an unbreakable cipher that is 
significantly faster to implement over many thousands of records 
than   any   of   today’s   secure   one-way hashing algorithms (testing 
results shown below). 

Now  let’s  say  we  want  to  encrypt  the  string  “ARRON”  from  data  
set 𝑆௕. 

Table 3. Second Message Conversion 

 

 The   encryption   of   “ARRON”   results   in   a   string   with   only   one  
character  different   than   the   encryption  of   “AARON”.  Therefore,  
string-similarity measures like Jaro-Winkler, Dice Coefficient, 
and Jaccard-Similarity, etc., will return the same result as 
comparing non-encrypted strings. 

 

4.3  Chaffing the Wheat – An Additional 
Level of Security 

While the use of a one-time-pad results 
in string encryptions that can withstand 
frequency and coincidence attacks, there 
still remains the possible issue of 
gleaning important information from the 
actual lengths of the strings themselves. 
If the attacker knows that a particular 
column of data store surnames, then 
some form of statistical attack may be 
possible just given the incidence of 

certain name lengths.  

For example, while the most common length for a surname in the 
Unites States is 6 characters (20.82%), a surname of 13 characters 
is quite rare (0.03%) [12]. Therefore, a 13 character or longer 
string in the surname column may be quite easily derived 
(especially given any other demographics, like gender or zip 
code). It’s   important   to   note   here,   however,   that   while the 
deciphering of the 13 character name would certainly constitute a 
breach, it would not allow for a direct deciphering of other 
surname encryptions. Recall that the use of a one-time-pad means 
there is no discernible pattern to the substitution of characters. 
However, to guarantee that the data records remain de-identified, 
an additional level of security is surely warranted. 

4.3.1  Chaff and Winnow Overview 
The second level of obfuscation employed in addition to a one-
time-pad is chaffing. Borrowing language from the farming 
practice  of  “winnowing  the  chaff  from  the  wheat”,  the  concept  of  
chaffing and winnowing as a means to achieve confidentiality in 
message transmission was first proposed by MIT computer 
scientist Ronald Rivest [10]. Chaffing and Winnowing introduces 
an approach that does not use encryption keys, but instead uses 
“authentication”   keys.   An   authentication   key   allows   for   the  
identification of valid bits from invalid bits of data. Using this 
knowledge, a message can be sent with both valid and invalid 
parts and the receiver can remove the invalid bits from the good 
bits (winnow the chaff) to get the message (the wheat). Using this 
approach, the cipher generated by the one-time-pad can be 
“padded”   with   additional characters, resulting in every string 
returned having the same number of characters. 

4.3.1.1 “Wheat”  Position  Hashes 
The wheat-key, as discussed, is a randomly generated GUID sent 
from party C to parties A and B. The wheat-key is then used by 
parties A and B to generate variably-truncated HMAC hashes as 
position identifiers for the characters produced by the pad-cipher 
(the wheat). That is, each position number (1,2,3,etc.) gets hashed 
by an HMAC using a one-way hash algorithm (e.g. 
HMAC_SHA512) that uses the wheat-key as the HMAC key. 
Each position-hash is prepended to its related cipher-character. 

The phrase variably-truncated hashes means to indicate that the 
entire HMAC-hash of a position (e.g. 64 characters for SHA512) 
does not have to be returned as part of the cipher. It is sufficient 
that the position-hashes be significantly truncated (e.g. 2 or 3 
characters) as long as no position-hash is repeated. In this manner, 
a significantly shorter string gets delivered saving significant 
bandwidth (consider a million-row name table). However, to be 

A A R O N            

1 1 18 15 14            

D O 8 8 Z 0 D L E 7 S Z Z I 6 A 

4 15 35 35 26            

5 16 53 50 40 

Add the two 
position 

numbers, then 
MOD 36 

5 16 17 14 4 

Convert Position 
to Letter 

E P Q N D 

A R R O N            

1 18 18 15 14            

D O 8 8 Z 0 D L E 7 S Z Z I 6 A 

4 18 35 35 26            

Table 4. Cipher with same Number and Placement of 
Differences as Non-cipher 

5 18 53 50 40 

MOD 36 

5 18 17 14 4 

Convert Position 
to Letter 

E R Q N D 



able to do so requires that the independently generated chaff-keys 
produced by parties A and B be generated in such as manner as to 
check that the generated key, when truncated to the length of the 
truncated wheat-key position hashes, does not duplicate any of 
wheat-key position hashes.  

4.3.1.1.1 “Chaff”  Position  Hashes 
As indicated, the generation of chaff means the generation of 
variably-truncated hashes as position identifiers that do not match 
any of   the   “wheat”   position hashes. The random chaff-keys 
produced independently by both A and B are used for this 
purpose. These invalid position-hashes are appended to a random 
selection of enough characters to create a string of some 
predetermined length (e.g. 20 characters). Because A and B select 
their chaff keys independently from each other, the chaff each 
creates and inserts does not match the other, thus further 
obfuscating the string of data. 

4.3.2 Fisher-Yates Shuffle and Generation of Return 
Value 
After appending the chaff, an unbiased shuffling algorithm is 
applied to sufficiently mix up the wheat and the chaff. In our 
application, the shuffling algorithm employed is a modern variant 
of the Fisher-Yates shuffle as updated by Donald E. Knuth [13].   

The Fisher–Yates shuffle is an algorithm for generating a random 
permutation (shuffle) of a finite set. Properly implemented, the 
Fisher–Yates shuffle is unbiased, making every permutation 
equally probable. The variant employed in our Virginia systems is 
an “in-place” shuffle, meaning that, given a pre-initialized array, it 
shuffles the elements of the array in place, rather than producing a 
shuffled copy of the array. This can result in a performance gain 
for large arrays. 

A summary of the algorithm [14]: To 
initialize an array a of n elements to a 
randomly shuffled copy of source, both 0-
based: 

  a[0]  ←  source[0] 

  for  i  from  1  to  n  −  1  do 

      j  ←  random  integer  with  0  ≤ j  ≤  i 

      a[i]  ←  a[j] 

      a[j]  ←  source[i] 

For our purposes, this general algorithm 
is adjusted to allow for what we call a 
“shuffle-chunck”   size.   The   shuffle-
chunck size equals a single character plus 
its appended position-hash length. Each 
“chunk”  needs to be shuffled together as a 
single entity.  

4.4 Winnowing the Chaff 
and Comparing the Wheat - 
Approximate String 
Matching with Cipher and 
Chaff Strings 
Upon receipt of the data, the fully chaffed 
strings are stored for the duration of the 
linkage procedure.  Party C feeds the 
retained   “wheat”   key   to   a   pre-compiled 

comparison-program, along with the two lists of fully-chaffed 
strings and the desired string-similarity function. Using the 
“wheat”   key as the HMAC key, the comparison-program first 
generates hashes for the maximum number of character positions 
(e.g. 1 thru 20). Then, for each possible comparison between 
strings in 𝑆௔    and 𝑆௕, these valid hashes are used to pull out and 
re-order the valid cipher-characters. At this point, the 
comparison-program compares the two cipher-strings using the 
selected string-similarity function. The comparison-program 
returns to party C only the unique-identifiers associated with the 
chaffed-strings (supplied by both parties A and B), and the string-
comparison metric. 

4.5 Sample Output 
Figure 1 shows sample output from the use of the Pad and Chaff 
algorithms employed in the data record linkage system of the two 
Virginia data projects. 

After showing the generated wheat-key, chaff-key, and pad-key 
(here   called   “Encrypt-safe   rand   alphanum   key”),   the sample 
output shows in a step-by-step manner how the original string to 
be encoded is (1) normalized (removing odd characters, spacing, 
etc.), (2) ciphered using the randomly generated one-time pad, (3) 
extended with the insertion of wheat-key hashed positions, (4) 
extended with the insertion of fake chaff-key hashed positions, 
and (5) shuffled using the Fisher-Yates shuffle algorithm. It is 
easy to see that the final string values that are delivered for 
matching do not in any way match. 

Various string similarity functions are then run by the comparison 
program on the two final string, producing the metrics at the 
bottom of the figure. 

4.6 Performance Metrics To Be Considered 

Figure 1. Sample output from Pad and Chaff Algorithms 



Because the ciphers that get compared at the end of the process 
using string similarity functions will produce results identical to 
those produced by using the same similarity functions, the typical 
precision and recall metrics need not be considered. The two 
important metrics to be considered in this process are (1) the 
speed of the pad-ciphering and chaffing-processes in comparison 
to other processes that may be used (e.g. simple one-way hash 
algorithm, using a one-way hash-algorithm to generate the 
encoded string letters instead of using a one-time pad cipher, etc.), 
and (2), the size of the data set to be returned in comparison to the 
same data set being returned using alternate methods (e.g. 
returning full single one-way hashes of each string). There are 
many alternate scenarios that can be considered. Preliminary tests 
indicate that a one-time pad will produce its cipher about 60 times 
faster than a standard one-way-hash (SHA1), however, there a 
number of other variables to consider before drawing any 
conclusions. Work is currently underway to compare a number of 
alternate scenarios. These will be reported in a follow-up extended 
version of this document. 

 

4.7 Conclusion 
This paper has presented a method for conducting privacy-
protected record linkage in a manner that still allows for the use of 
standard string similarity measures. The integration of record-
level data from the administrative data systems of multiple public 
service agencies has the potential for producing analyses of public 
policy effects that have heretofore been impossible given the 
various and overlapping privacy laws and regulations at multiple 
levels of government that preclude the integration of identified 
data sets. The hope is that this method will enhance the ability to 
create high-quality integrated data sets while still keeping 
personally identifying data private. 
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