
Pad and Chaff: Secure Approximate String Matching in
Private Record Linkage

Aaron D Schroeder
Public Policy Data Group

Institute for Policy and Governance
Virginia Tech

1-540-239-0393
aaron.schroeder@vt.edu

ABSTRACT
The promise of high-quality, integrated data sets for policy
analysis is great. However, significant impediments remain that
make the creation of such data sets very difficult. The
identification of processes and algorithms for carrying out
approximate string matching on personal-level information while
at the same time keeping that information unknown (private
linkage) is quickly growing in importance. Without these
processes and algorithms, the creation of high-quality data sets
integrated from multiple public agencies remains difficult. In this
paper, a method for carrying out secure, private string-matching
between data sets using standard string similarity measures is
presented.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, integrity, and
protection; H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and
effectiveness); H.2.8 [Database Applications]: Data mining.

General Terms
Design, Algorithms, Performance, Experimentation, Security.

Keywords
Record linkage, secure scalar product, private linkage, private
information retrieval, linkage, integration, privacy.

1. INTRODUCTION
The integration of record-level data from the administrative data
systems of multiple public service agencies has the potential for
generating high-quality evidence (heretofore unattainable) to be
used in the assessment of public policy effects. However, when
attempting to combine data records from these systems, a number
of complex legal issues must be considered, not the least of which
is the privacy of persons represented by the data in the systems.
Significant differences exist between federal law, multiple
state/provincial/regional laws, and agency enforcement
regulations as they pertain to the integration of identified
information [1] [2].

Because there exist many overlapping and often inconsistent
privacy-related restrictions at multiple levels of government, the
linkage of administrative data records across public agencies can
prove exceedingly difficult. In response, an emerging approach to
constructing cross-agency data sets for the purpose of policy
analysis involves the probabilistic linkage of records using
demographics (e.g. name, gender, birthdate, location) that have
been hashed/encrypted in some manner so as to be unidentifiable
to the entity responsible for carrying out the linking process (or
anyone else who may gain unauthorized access to the records).

The issue that arises is that some common methods of
demographic comparison (e.g. string similarity functions) are
rendered inadequate by the usage of the hashing/encryption
techniques. Most notably, a slight misspelling in “first name” will
result in completely different hashes and, therefore, a 100% non-
match). A number of approaches to rectify this issue have been
proposed [3] [4] [5]. However, each proposed method necessarily
involves some level of reduction in matching performance as
compared to string-similarity functions used on un-obscured data
[6].

In this paper, a methodology is presented that provides the
necessary function of privacy protection but also allows for the
use of existing string-similarity functions (e.g. Jaro-Winkler) on
privacy-protected strings without loss of fidelity. The described
methodology is currently being deployed in two multi-agency
data-integration projects in the State of Virginia [7] [8].

2. Problem Statement
Given two database owners A and B each holding lists of
identified strings (e.g. surnames) 𝑆௔ = {𝑎ଵ,… , 𝑎௡} and
𝑆௕ = {𝑏ଵ,… , 𝑏௡}, and a data linker C, compute string
similarity measures of all pairs (𝑎௜, 𝑏௜) ∈ 𝑆௔ × 𝑆௕ such that all
strings can only be seen by C in a privacy-protected format, and
the measures computed match the measures if computed on non-
privacy-protected strings.

3. Previous Approaches
A number of approaches have been proposed and used to carry
out string similarity matching in a privacy-protected manner.
However, given the methods employed, these approaches result in
some necessary amount of loss in recall, precision, or both in
comparison to string similarity functions carried out on
unprotected strings. Pang and Hansen suggest a protocol
employing a common table of reference strings to which the
actual strings in two data sets can be compared. Edit-distances
from the actual strings to the reference strings can be computed.
The reference strings closest to the actual strings can be encrypted
and sent along with the edit distances to be used for match
determination [3]. Unfortunately, testing of the process results in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS2012, 3-5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1306-3/12/12...$15.00.

fairly sizeable reduction in both recall and precision in
comparison to a reference string similarity measure used on
unprotected strings [6].
Scannapieco, et al. suggest a protocol that employs a bit of
mathematical stenography by embedding a given string using the
SparseMap method into a Euclidean space already populated with
random strings. The coordinates for a given string are then given
as the approximate distances between the string and the random
strings. A third party compares the Euclidean distances between
the string to determine a match [4]. Testing shows a markedly
better result than the table of reference string approach, but still a
not insignificant difference from a reference string similarity
measure used on unprotected strings [6].
Schnell et al. propose a very novel method that takes advantage of
the properties of Bloom filters. A Bloom filter is a space-efficient
probabilistic data structure represented by a bit array that is used
to test whether an element is a member of a set. Strings are stored
as bits that represent the HMAC hashes of the string’s constituent
n-grams. Bloom filters with similar strings will have a high
proportion of the same bits set to 1. Using this knowledge, a string
similarity measure, the Dice coefficient, can be used to calculate
the ratio of similarity. This method works quite well, in fact
testing shows that the precision-recall curves using 2-grams is
nearly identical to the benchmark metric [6]. However, the Bloom
filter approach is only applicable to using similarity measures that
determine the overall similarity of one set of characters to another.
That is, when order does not matter. Because of the nature of the
encoding scheme and Bloom filters themselves, there is not a way
to use this method with standard distance-metrics like Levenstein
or Jaro-Winkler. In the approach presented here, both n-gram
based similarity functions and distance-based similarity functions
can be employed.

4. Method
The algorithm described in this paper is to allow comparison of
strings using standard string-similarity functions when the strings
must be obfuscated in some secure manner (e.g. hash, encrypt,
cipher). Two separate processes are elaborated within. The first,
using a one-time-pad to create cipher for each string, provides for
a type of obfuscation that is both theoretically unbreakable and
not vulnerable to frequency analysis [9]. The second process
enhances the first by employing the method of chaffing and
winnowing which involves the addition to the cipher of fake
characters (“chaff”) to the valid characters (“wheat”) so as to
result in all encoded strings being the same length [10].

4.1 Key Creation and Distribution
We start by assuming two parties A and B who want to link data
records, and a data linker C to whom parties A and B only want to
divulge personal information that has been obfuscated in a fully-
secure manner. To initiate the process, data linker C sends to both
A and B two keys, a randomly-derived pad-key and a randomly-
derived wheat-key. The pad-key is used by both A and B for
string ciphering. The wheat-key is used by both A and B for
character-position hashing. A and B also, individually, create a
chaff-key for the insertion of fake characters and positions before
delivering the string back to C. The expectation is that these keys
are produced in an automated fashion by a computer program that
can handle the randomness requirements of pad-key creation, as
well as the production of a globally unique identifier (GUID), a
unique 128-bit number that is produced by the computer OS or
particular application (e.g. database) or library (e.g. Java, .NET).
The wheat- and chaff-keys are based on the production of random

GUIDs. The pad-key and wheat-key are sent via SSL-encrypted
electronic communications.

After sending the pad-key, the key is immediately discarded from
memory (not stored). The wheat-key is retained and stored for
chaff-removal and character-position decoding of the returned
strings.

4.1.1 One-Time-Pad Key Generation
In cryptography, a one-time pad is a private key that has been
generated randomly and is used only once to encrypt a message.
The message is then decrypted by the receiver using a matching
one-time pad and key. Messages encrypted with keys based on
randomness have the advantage that they are considered to be
“perfect” encryption methods, which means there is a
mathematical proof that cryptanalysis is impossible [9] [11]. Each
encryption is unique and bears no relation to the next encryption.
There is no pattern to decipher.

4.1.2 Cryptographically Secure Random Key
Generation
The key to a one-time-pad’s effectiveness is the true randomness
of the key produced. Cryptographic applications require truly
random sequences that cannot be predicted. This is an issue that
demands close attention as most programming languages will
instantiate a “System.Random” or similar object instance and call
one of the member functions to get random numbers. The
numbers returned aren't truly random, but rather pseudo random.
This can be good enough for most applications that call for
randomness, but not for a one-time-pad because the “pseudo”
random nature of the numbers returned by such objects is not
good enough for cryptographic purposes. These algorithms
generate random numbers that are actually a sequence in which
the next number generated is dependent on the previous number
generated (therefore potentially predictable).

What is needed instead is for each number to be selected
randomly irrespective of any previous selections. Most modern
languages implement a library specifically for cryptography and
provide such a method for the production of independent random
numbers. In Java there is the Security.SecureRandom class. In
.NET (which is used for the two Virginia projects) the
Cryptography.RandomNumberGenerator abstract class serves as
the base class for all cryptographic random number generators.
Cryptography.RNGCryptoServiceProvider provides an
implementation of that abstract class. For our implementation, we
use the RNGCryptoServiceProvider class to create a pad-key by
creating a byte array the same size as a given alpha-numeric seed
and populating the array with independently-random characters
(converted from the numbers).

4.2 Cipher Generation: One-Time-Pad
Example
As an example, let’s say that we want to encrypt the string
“AARON” from data set 𝑆௔. Using a cryptographically secure
random key generator we feed in the alpha-numeric seed:
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

and are returned the pad-key

"DO88Z0DLE7SZZI6ABAD4CHIJJ6PTYZUYZYKT".

Table 1. The Message is aligned with the Pad

Table 2. Add Message and Pad Positions (from original

alphanumeric key), then MOD length of the original key
 We start by aligning the message and the
pad-key and recording each characters
position in the original alpha-numeric seed
(e.g. R is the 18th letter). We then add the
aligned position numbers and used modular
arithmetic to “wrap-around” the original
alpha-numeric key (in this case, MOD 36)
to get to the new cipher-letter. In the
example, “AARON” becomes “EPQND”.
This result is not vulnerable to frequency
analysis which can be evidenced by the fact
that the same letter is not encrypted the
same way twice (The first two letters, “A”

and “A” where encrypted as “E” and “P”, respectively. The result
also withstands index of coincidence attacks (looking for
repetition of the key) because the key is as long as or longer than
the message being encoded.

While decryption of a one-time pad, given the key, is straight
forward, we have no wish to decrypt the result. This is why the
pad-key is discarded by C immediately after transmission to A
and B. What we care about here is that both A and B use the same
pad-key, thus producing the same cipher for identical characters.
In this manner, we have created an unbreakable cipher that is
significantly faster to implement over many thousands of records
than any of today’s secure one-way hashing algorithms (testing
results shown below).

Now let’s say we want to encrypt the string “ARRON” from data
set 𝑆௕.

Table 3. Second Message Conversion

 The encryption of “ARRON” results in a string with only one
character different than the encryption of “AARON”. Therefore,
string-similarity measures like Jaro-Winkler, Dice Coefficient,
and Jaccard-Similarity, etc., will return the same result as
comparing non-encrypted strings.

4.3 Chaffing the Wheat – An Additional
Level of Security

While the use of a one-time-pad results
in string encryptions that can withstand
frequency and coincidence attacks, there
still remains the possible issue of
gleaning important information from the
actual lengths of the strings themselves.
If the attacker knows that a particular
column of data store surnames, then
some form of statistical attack may be
possible just given the incidence of

certain name lengths.

For example, while the most common length for a surname in the
Unites States is 6 characters (20.82%), a surname of 13 characters
is quite rare (0.03%) [12]. Therefore, a 13 character or longer
string in the surname column may be quite easily derived
(especially given any other demographics, like gender or zip
code). It’s important to note here, however, that while the
deciphering of the 13 character name would certainly constitute a
breach, it would not allow for a direct deciphering of other
surname encryptions. Recall that the use of a one-time-pad means
there is no discernible pattern to the substitution of characters.
However, to guarantee that the data records remain de-identified,
an additional level of security is surely warranted.

4.3.1 Chaff and Winnow Overview
The second level of obfuscation employed in addition to a one-
time-pad is chaffing. Borrowing language from the farming
practice of “winnowing the chaff from the wheat”, the concept of
chaffing and winnowing as a means to achieve confidentiality in
message transmission was first proposed by MIT computer
scientist Ronald Rivest [10]. Chaffing and Winnowing introduces
an approach that does not use encryption keys, but instead uses
“authentication” keys. An authentication key allows for the
identification of valid bits from invalid bits of data. Using this
knowledge, a message can be sent with both valid and invalid
parts and the receiver can remove the invalid bits from the good
bits (winnow the chaff) to get the message (the wheat). Using this
approach, the cipher generated by the one-time-pad can be
“padded” with additional characters, resulting in every string
returned having the same number of characters.

4.3.1.1 “Wheat” Position Hashes
The wheat-key, as discussed, is a randomly generated GUID sent
from party C to parties A and B. The wheat-key is then used by
parties A and B to generate variably-truncated HMAC hashes as
position identifiers for the characters produced by the pad-cipher
(the wheat). That is, each position number (1,2,3,etc.) gets hashed
by an HMAC using a one-way hash algorithm (e.g.
HMAC_SHA512) that uses the wheat-key as the HMAC key.
Each position-hash is prepended to its related cipher-character.

The phrase variably-truncated hashes means to indicate that the
entire HMAC-hash of a position (e.g. 64 characters for SHA512)
does not have to be returned as part of the cipher. It is sufficient
that the position-hashes be significantly truncated (e.g. 2 or 3
characters) as long as no position-hash is repeated. In this manner,
a significantly shorter string gets delivered saving significant
bandwidth (consider a million-row name table). However, to be

A A R O N

1 1 18 15 14

D O 8 8 Z 0 D L E 7 S Z Z I 6 A

4 15 35 35 26

5 16 53 50 40

Add the two
position

numbers, then
MOD 36

5 16 17 14 4

Convert Position
to Letter

E P Q N D

A R R O N

1 18 18 15 14

D O 8 8 Z 0 D L E 7 S Z Z I 6 A

4 18 35 35 26

Table 4. Cipher with same Number and Placement of
Differences as Non-cipher

5 18 53 50 40

MOD 36

5 18 17 14 4

Convert Position
to Letter

E R Q N D

able to do so requires that the independently generated chaff-keys
produced by parties A and B be generated in such as manner as to
check that the generated key, when truncated to the length of the
truncated wheat-key position hashes, does not duplicate any of
wheat-key position hashes.

4.3.1.1.1 “Chaff” Position Hashes
As indicated, the generation of chaff means the generation of
variably-truncated hashes as position identifiers that do not match
any of the “wheat” position hashes. The random chaff-keys
produced independently by both A and B are used for this
purpose. These invalid position-hashes are appended to a random
selection of enough characters to create a string of some
predetermined length (e.g. 20 characters). Because A and B select
their chaff keys independently from each other, the chaff each
creates and inserts does not match the other, thus further
obfuscating the string of data.

4.3.2 Fisher-Yates Shuffle and Generation of Return
Value
After appending the chaff, an unbiased shuffling algorithm is
applied to sufficiently mix up the wheat and the chaff. In our
application, the shuffling algorithm employed is a modern variant
of the Fisher-Yates shuffle as updated by Donald E. Knuth [13].

The Fisher–Yates shuffle is an algorithm for generating a random
permutation (shuffle) of a finite set. Properly implemented, the
Fisher–Yates shuffle is unbiased, making every permutation
equally probable. The variant employed in our Virginia systems is
an “in-place” shuffle, meaning that, given a pre-initialized array, it
shuffles the elements of the array in place, rather than producing a
shuffled copy of the array. This can result in a performance gain
for large arrays.

A summary of the algorithm [14]: To
initialize an array a of n elements to a
randomly shuffled copy of source, both 0-
based:

 a[0] ← source[0]

 for i from 1 to n − 1 do

 j ← random integer with 0 ≤ j ≤ i

 a[i] ← a[j]

 a[j] ← source[i]

For our purposes, this general algorithm
is adjusted to allow for what we call a
“shuffle-chunck” size. The shuffle-
chunck size equals a single character plus
its appended position-hash length. Each
“chunk” needs to be shuffled together as a
single entity.

4.4 Winnowing the Chaff
and Comparing the Wheat -
Approximate String
Matching with Cipher and
Chaff Strings
Upon receipt of the data, the fully chaffed
strings are stored for the duration of the
linkage procedure. Party C feeds the
retained “wheat” key to a pre-compiled

comparison-program, along with the two lists of fully-chaffed
strings and the desired string-similarity function. Using the
“wheat” key as the HMAC key, the comparison-program first
generates hashes for the maximum number of character positions
(e.g. 1 thru 20). Then, for each possible comparison between
strings in 𝑆௔ and 𝑆௕, these valid hashes are used to pull out and
re-order the valid cipher-characters. At this point, the
comparison-program compares the two cipher-strings using the
selected string-similarity function. The comparison-program
returns to party C only the unique-identifiers associated with the
chaffed-strings (supplied by both parties A and B), and the string-
comparison metric.

4.5 Sample Output
Figure 1 shows sample output from the use of the Pad and Chaff
algorithms employed in the data record linkage system of the two
Virginia data projects.

After showing the generated wheat-key, chaff-key, and pad-key
(here called “Encrypt-safe rand alphanum key”), the sample
output shows in a step-by-step manner how the original string to
be encoded is (1) normalized (removing odd characters, spacing,
etc.), (2) ciphered using the randomly generated one-time pad, (3)
extended with the insertion of wheat-key hashed positions, (4)
extended with the insertion of fake chaff-key hashed positions,
and (5) shuffled using the Fisher-Yates shuffle algorithm. It is
easy to see that the final string values that are delivered for
matching do not in any way match.

Various string similarity functions are then run by the comparison
program on the two final string, producing the metrics at the
bottom of the figure.

4.6 Performance Metrics To Be Considered

Figure 1. Sample output from Pad and Chaff Algorithms

Because the ciphers that get compared at the end of the process
using string similarity functions will produce results identical to
those produced by using the same similarity functions, the typical
precision and recall metrics need not be considered. The two
important metrics to be considered in this process are (1) the
speed of the pad-ciphering and chaffing-processes in comparison
to other processes that may be used (e.g. simple one-way hash
algorithm, using a one-way hash-algorithm to generate the
encoded string letters instead of using a one-time pad cipher, etc.),
and (2), the size of the data set to be returned in comparison to the
same data set being returned using alternate methods (e.g.
returning full single one-way hashes of each string). There are
many alternate scenarios that can be considered. Preliminary tests
indicate that a one-time pad will produce its cipher about 60 times
faster than a standard one-way-hash (SHA1), however, there a
number of other variables to consider before drawing any
conclusions. Work is currently underway to compare a number of
alternate scenarios. These will be reported in a follow-up extended
version of this document.

4.7 Conclusion
This paper has presented a method for conducting privacy-
protected record linkage in a manner that still allows for the use of
standard string similarity measures. The integration of record-
level data from the administrative data systems of multiple public
service agencies has the potential for producing analyses of public
policy effects that have heretofore been impossible given the
various and overlapping privacy laws and regulations at multiple
levels of government that preclude the integration of identified
data sets. The hope is that this method will enhance the ability to
create high-quality integrated data sets while still keeping
personally identifying data private.

5. Works Cited
1 Schroeder, Aaron. Multi-Agency Integration of Child-

Relevant Data Sets in the Commonwealth of Virginia:
Application of a Privacy Protecting Federated Model. The
Data Quality Campaign (DQC), Washington D.C., 2009.

2 Spears, J. V., Bradburn, I., Schroeder, A., Tester, D., and &
Forry, N. New data on child care subsidy programs. Policy
and Practice (August 2012), 18-21.

3 Pang, Chaoyi and Hansen, David. Improved Record Linkage
for Encrypted Identifying Data. In Proceedings of the 14th
Annual Health Informatics Conference (2006), 164-168.

4 Scannapieco, M., Figotin, I., Bertino, E, and Elmagarmid,
A.K. Privacy Preserving Schema and Data Matching. In

Proceedings of the ACM SIGMOD International Conference
on Management and Data (2007), 653-654.

5 Schnell, Rainer, Bachteler, Tobias, and Reiher, Jorg. Privacy-
preserving record linkage using Bloom filters. BMC Medical
Informatics and Decision Making (2009).

6 Bachteler, Tobias, Schnell, Rainer, and Reiher, Jorg. An
Empirical Comparison of Approaches to Approximate String
Matching in Private Record Linkage. In Proceedings of
Statistics Canada Symposium -- Social Statistics: The
Interplay Among Censuses, Surveys and Administrative Data
(2010).

7 Education, Virginia Department of. Virginia Longitudinal
Data System (VLDS).
http://www.doe.virginia.gov/info_management/longitudinal_d
ata_system/index.shtml, Richmond, VA, 2012.

8 Social Services, Virginia Department of. Project Child
HANDS: Child Care Subsidy, Health and Early Education.
http://www.childhands.org/, Richmond, VA, 2012.

9 Denning, Dorothy. Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 1982.

10 Rivest, Ronald L. Chaffing and Winnowing: Confidentiality
without Encryption. MIT Lab for Computer Science, Boston,
MA, 1998.

11 Claude, Shannon. Communication Theory of Secrecy
Systems. Bell System Technical Journal, 28, 4 (1949), 656-
715.

12 Word, David L, Coleman, Charles D., Nunziata, Robert, and
Kominski, Robert. Demographic Aspects of Surnames from
Census 2000. United States Census Bureau, Washington D.C.,
2000.

13 Knuth, Donald E. The Art of Computer Programming vol. 2
(3rd ed.). Addison-Wesley, Boston, 1969.

14 Fisher–Yates shuffle. Wikipedia, 2012.

15 Culhane, Dennis P., Fantuzzo, John, Rouse, Heather L., Tam,
Vicki, and Lukens, Jonathan. Connecting the Dots: The
Promise of Integrated. Data Systems for Policy Analysis and
Systems Reform. In Intelligence for Social Policy (),
University of Pennsylvania.

